1. (15%) Evaluate the limit (if it exists) of the following questions.
 (a) \(\lim_{x \to a} (\sqrt{x^2 + a^2} - x) \)
 (b) \(\lim_{x \to a} \frac{x^2 - a^2}{x + a} \), \(a > 0\)
 (c) \(\lim_{x \to 0} (1 + x)^{1/x} \)

2. (15%) Evaluate the following integrals:
 (a) \(\int \frac{e^x - e^{-x}}{e^x + e^{-x}} \, dx \)
 (b) \(\int x^3 (\ln x)^2 \, dx \)
 (c) \(\int_0^1 \int_0^1 \sqrt{1 + x^2} \, dx \)

3. (5%) Given \(F(x) = \int_0^x f(t) \, dt \), show \(\int_0^x (1 - F(x)) \, dx = \int_0^x x f(x) \, dx \).

4. (5%) Present the result of \(\frac{d}{dx} \int_0^x (a - x) f(x) \, dx \) in terms of \(F(x) \) where \(F(x) = \int_0^x f(x) \, dx \).

5. (10%) Show directly from the definition that \(\lim_{x \to 1} \frac{x - 1}{x + 1} = \frac{1}{2} \). (Hint: Definition of Limit)
 - Given a function \(f \) and numbers \(a \) and \(L \), we say that \(f(x) \) tends to \(L \) as \(x \) tends to \(a \) if for each positive number \(\varepsilon \) there is positive number \(\delta \) such that \(f(x) \) is defined and \(|f(x) - L| < \varepsilon \) whenever \(0 < |x - a| < \delta \).

6. (10%) The region bounded by \(f(x) = 1/x \), the \(x \) axis, and the line \(x = 1 \), and situated to the right of \(x = 1 \), is revolved about the \(x \) axis. Evaluate the improper integral and assign a value to the volume of the solid generated.

7. (10%) Use Simpson's Rule with \(2n = 4 \) to compute the approximate value for \(\int_1^3 \frac{dx}{x} \).
 Keep two decimal places and round off to one less.

8. (10%) For what values of \(p \) and \(q \) does the series \(\sum_{n=1}^{\infty} \frac{(\ln n)^p}{n^q} \) converge?

9. (10%) Use Taylor's Theorem to compute \((1.1)^{1/5}\) to an accuracy of four decimal places.
 (Hint: Taylor's Theorem with Derivative Form of Remainder -- Suppose that \(f \), \(f', f'' \), \ldots, \(f^{(n)} \) are all continuous on some interval containing \(a \) and \(b \). Then there is a number \(c \) between \(a \) and \(b \) such that \(f(b) = f(a) + f'(c)(b-a) + \cdots + f^{(n)}(c)(b-a)^n/n! + f^{(n+1)}(d)(b-a)^{n+1}/(n+1)! \). That is, the remainder \(R_n \) is given by the formula \(R_n = f^{(n+1)}(c)(b-a)^{n+1}/(n+1)! \).)

10. (10%) Find the critical values of \(f(x,y) = x^2 + y^2 \), subject to the condition that \(x^2 + y^2 + 6xy = 0 \).